Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Dichlorido- $1 \kappa^{2} \mathrm{Cl}-\mu-[(1,2,5,6-\eta: 3,4,7,8-$ ๆ)-1,3,5,7-cyclooctatetraene]dimethyl$2 \kappa^{2} C$-diplatinum(II)

Ah-Ran Song, ${ }^{\text {a }}$ In-Chul Hwang ${ }^{\text {b }}$ and Kwang Ha ${ }^{\text {a }}$
${ }^{\text {a }}$ School of Applied Chemical Engineering, Centre for Functional Nano Fine Chemicals, Chonnam National University, Gwangju 500-757, Republic of Korea, and ${ }^{\mathbf{b}}$ Department of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
Correspondence e-mail: hakwang@chonnam.ac.kr

Received 29 May 2007; accepted 7 June 2007
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.020 \AA$; R factor $=0.058 ; w R$ factor $=0.145$; data-to-parameter ratio $=19.5$.

The title complex, $\left[\mathrm{Pt}_{2}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{8}\right)\right]$, consists of PtCl_{2} and $\mathrm{Pt}\left(\mathrm{CH}_{3}\right)_{2}$ groups bridged by a 1,3,5,7-cyclooctatetraene ligand, and is disposed about a mirror plane passing through the two Pt atoms, the methyl groups and the centre of the ligand. The coordination geometry around each $\mathrm{Pt}^{\mathrm{II}}$ centre is essentially square planar.

Related literature

For related literature, see: Doyle \& Baenziger (1995); Doyle et al. (1961); Elschenbroich \& Salzer (1992); Fritz \& Keller (1962); Fritz \& Sellmann (1967); Jensen (1953); Kistner et al. (1963); Kunkely \& Vogler (2006); Song et al. (2006); Tresoldi et al. (1982).

Experimental

Crystal data
$\left[\mathrm{Pt}_{2}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{8}\right)\right]$
$M_{r}=595.29$
Orthorhombic, Pnma
$a=7.8478$ (8) \AA
$b=10.3924$ (10) \AA
$c=15.4582(16) \AA$
$V=1260.7$ (2) \AA^{3}
$Z=4$
Mo $K \alpha$ radiation
$\mu=22.55 \mathrm{~mm}^{-1}$
$T=293$ (2) K
$0.25 \times 0.12 \times 0.10 \mathrm{~mm}$

Data collection

Bruker SMART 1000 CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2000)
$T_{\text {min }}=0.574, T_{\text {max }}=1.000$
(expected range $=0.060-0.105)$
7010 measured reflections 1363 independent reflections 1226 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.050$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
70 parameters
$w R\left(F^{2}\right)=0.145$
H -atom parameters constrained
$S=1.20$
$\Delta \rho_{\text {max }}=1.77 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-1.95 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\mathrm{A}^{\circ}{ }^{\circ}$).

$\mathrm{Pt} 1-\mathrm{C} 1$	$2.256(16)$	$\mathrm{Pt} 2-\mathrm{C} 5$	$2.195(17)$
$\mathrm{Pt} 1-\mathrm{C} 2$	$2.267(16)$	$\mathrm{Pt} 2-\mathrm{C} 3$	$2.249(15)$
$\mathrm{Pt} 1-\mathrm{Cl} 1$	$2.460(4)$	$\mathrm{Pt} 2-\mathrm{C} 4$	$2.257(15)$
$\mathrm{Pt} 2-\mathrm{C} 6$	$2.137(19)$		
$\mathrm{Cl} 1-\mathrm{Pt} 1-\mathrm{Cl}^{\mathrm{i}}$	$83.3(2)$	$\mathrm{C} 6-\mathrm{Pt} 2-\mathrm{C} 5$	$85.1(7)$

Symmetry code: (i) $x,-y+\frac{3}{2}, z$.
Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

This study received financial support from Chonnam National University in 2006.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SK3133).

References

Bruker (2000). SADABS (Version 2.03), SMART (Version 5.618) and SAINT (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.
Doyle, J. R. \& Baenziger, N. C. (1995). Acta Cryst. C51, 1116-1118.
Doyle, J. R., Hutchinson, J. H., Baenziger, N. C. \& Tresselt, L. W. (1961). J. Am. Chem. Soc. 83, 2768-2769.
Elschenbroich, Ch. \& Salzer, A. (1992). Organometallics, 2nd ed, pp. 362-369. Weinheim: VCH.
Fritz, H. P. \& Keller, H. (1962). Chem. Ber. 95, 158-173.
Fritz, H. P. \& Sellmann, D. (1967). Spectrochim. Acta A, 23, 1991-1998.
Jensen, K. A. (1953). Acta Chem. Scand. 7, 868-870.
Kistner, C. R., Hutchinson, J. H., Doyle, J. R. \& Storlie, J. C. (1963). Inorg. Chem. 2, 1255-1261.
Kunkely, H. \& Vogler, A. (2006). Inorg. Chem. Commun. 9, 827-829.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Song, A.-R., Hwang, I.-C. \& Ha, K. (2006). Z. Kristallogr. New Cryst. Struct. 221, 471-472.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Tresoldi, G., Faraone, F., Piraino, P. \& Bottino, F. A. (1982). J. Organomet. Chem. 231, 265-270.

supplementary materials

Dichlorido-1 κ^{2} Cl- $\mu_{-[(1,2,5,6-\eta: 3,4,7,8-\eta)-1,3,5,7-c y c l o o c t a t e t r a e n e] d i m e t h y l-2 ~} \boldsymbol{\kappa}^{2} C$-diplatinum(II)

A.-R. Song, I.-C. Hwang and K. Ha

Comment

1,3,5,7-Cyclooctatetraene (cot) is a widely utilized and versatile ligand in organometallic chemistry (Elschenbroich \& Salzer, 1992). The cot ligand can coordinate metal atoms as a tub-shaped tetraene or as a planar aromatic anion $\mathrm{C}_{8} \mathrm{H}_{8}{ }^{2-}$, and its coordination modes are quite variable, viz. $\eta^{2}, \eta^{3}, \eta^{4}, \eta^{5}, \eta^{6}$ and η^{8}. Numerous cot-metal complexes are known, however, relatively few mono- and dinuclear Pt compounds with cot are synthesized and studied (Jensen, 1953; Doyle et al., 1961; Fritz \& Keller, 1962; Kistner et al., 1963; Fritz \& Sellmann, 1967; Tresoldi et al., 1982; Kunkely \& Vogler, 2006). The decomposition of the mononuclear complexes, $\left[(\cot) \operatorname{Pt} R_{2}\right]\left(R=\mathrm{CH}_{3}\right.$ or $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right)$, lead to the formation of the dinuclear complexes, $\left[R_{2} \mathrm{Pt}(\cot) \mathrm{Pt} R_{2}\right]$, in which cot acts as a bridging ligand between two Pt atoms. The NMR spectra of the dinuclear compounds were examined for potential long-range coupling by the ${ }^{195} \mathrm{Pt}$ nuclei (Kistner et al., 1963), and only the crystal structure of the dinuclear complex with CH_{3} was reported (Doyle \& Baenziger, 1995; Song et al., 2006). The X-ray structure analysis reveals that the complex contains a twofold axis passing through the Pt atoms and the center of the cot ligand. The dinuclear title complex, (I), was formed by the reaction of $\left[(\cot) \operatorname{Pt}\left(\mathrm{CH}_{3}\right)_{2}\right]$ with $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ and its structure is reported here.

The complex consists of PtCl_{2} and $\mathrm{Pt}\left(\mathrm{CH}_{3}\right)_{2}$ groups bridged by an 1,3,5,7-cyclooctatetraene ligand (Fig. 1), and is disposed about a mirror plane passing through the two Pt atoms and the center of the ligand (Fig. 2). Each Pt atom is essentially in a square-planar environment defined by the two midpoints of the π-coordinated double bonds of the cot ligand and the two Cl atoms or the two C atoms of methyl groups. The midpoints, the Pt and Cl or C atoms form two coordination planes with the largest deviations $0.002 \AA(\mathrm{Pt1})$ from the least-squares planes. The bond angles lie in the range of $83.3^{\circ}-95.5^{\circ}\left(<\mathrm{Cl1}-\mathrm{Pt1}-\mathrm{Cl1}{ }^{\mathrm{i}}=83.3(2)^{\circ},<\mathrm{M} 1 — \mathrm{Pt1}-\mathrm{M} 1^{\mathrm{i}}=85.7^{\circ},<\mathrm{Cl} 1 — \mathrm{Pt} 1 — \mathrm{M} 1=95.5^{\circ},<\mathrm{C} 5 — \mathrm{Pt} 2 — \mathrm{C} 6=\right.$ $85.1(7)^{\circ},<\mathrm{M} 2 — \mathrm{Pt} 2 — \mathrm{M} 2^{\mathrm{i}}=85.3^{\circ},<\mathrm{C} 6 — \mathrm{Pt} 2 — \mathrm{M} 1=94.2^{\circ},<\mathrm{C} 5 — \mathrm{Pt} 2 — \mathrm{M} 2=95.4^{\circ} ;$ symmetry code i: $x, 1.5-y, z$; M1 and M2 denote the centroids of the olefinic bonds $\mathrm{C} 1-\mathrm{C} 2$ and $\mathrm{C} 3-\mathrm{C} 3^{\mathrm{i}}$, respectively). The coordination planes are perfectly perpendicular to each other $\left(90.0^{\circ}\right)$. The $\mathrm{Pt}-\mathrm{C}(\cot)$ bond lengths range from 2.249 (15) \AA to $2.267(16) \AA$, and are slightly longer than the $\mathrm{Pt}-C$ (methyl) bond (2.195 (17) \AA and $2.137(19) \AA)$. The distances between the Pt atom and the midpoints are $2.156 \AA(\mathrm{M} 1), 2.150 \AA(\mathrm{M} 2)$ and $2.147 \AA\left(\mathrm{M} 2^{\mathrm{i}}\right)$. The $\mathrm{Pt} 1-\mathrm{C} 1 / \mathrm{C} 2$ bonds trans to Cl atom are, on an average, almost equal to the $\mathrm{Pt} 2-\mathrm{C} 3 / \mathrm{C} 4$ bonds trans to methyl group (the mean lengths: $\mathrm{Pt} 1-\mathrm{C} 1 / \mathrm{C} 2=2.262 \AA$ and $\mathrm{Pt} 2-\mathrm{C} 3 / \mathrm{C} 4=2.253$ \AA). The cot ligand coordinates the two Pt atoms very symmetrically in the tub conformation. The distance between the Pt atoms is 4.1407 (4) \AA. The four C atoms ($\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 1^{\mathrm{i}}$ and $\mathrm{C} 2{ }^{\mathrm{i}}$) coordinated to Pt 1 and the four C atoms ($\mathrm{C} 3, \mathrm{C} 4, \mathrm{C} 3^{\mathrm{i}}$ and $\mathrm{C} 4^{\mathrm{i}}$) coordinated to Pt 2 lie on a plane, respectively, with the torsion angles $<\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 2^{\mathrm{i}}-\mathrm{C} 1^{\mathrm{i}}=0^{\circ}$ and $<\mathrm{C} 3-\mathrm{C} 3^{\mathrm{i}}-\mathrm{C} 44^{\mathrm{i}}-\mathrm{C} 4$ $=0^{\circ}$. The Pt atoms are displaced by $1.581(12) \AA(\mathrm{Pt} 1)$ from the plane $\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 2^{\mathrm{i}} / \mathrm{C} 1^{\mathrm{i}}$ and $1.580(10) \AA(\mathrm{Pt} 2)$ from the plane $\mathrm{C} 3 / \mathrm{C} 3^{\mathrm{i}} / \mathrm{C} 4^{\mathrm{i}} / \mathrm{C} 4$, respectively. The planes are nearly parallel to each other with dihedral angle $0.3(1.9)^{\circ}$. The cot ring angles lie in the range of $121.1(15)^{\circ}-122.6(9)^{\circ}$ in the complex.

supplementary materials

Experimental

To a solution of cyclooctatetraenedimethylplatinum(II) $(0.0724 \mathrm{~g}, 0.22 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$ and $\mathrm{EtOH}(15 \mathrm{ml})$ was added a solution of $\mathrm{K}_{2} \mathrm{PtCl}_{4}(0.1018 \mathrm{~g}, 0.25 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$, and stirred for 24 h at room temperature. The formed precipitate was collected by filtration, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$, and dried, giving a orange powder (0.0277 g). Needleshaped crystals suitable for an X-ray structure analysis were obtained via slow evaporation from a CHCl_{3} solution.

Refinement

All H atoms were positioned geometrically and allowed to ride on their respective carrier atoms $[\mathrm{C}-\mathrm{H}=0.93$ or $0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}($ methyl C $\left.)\right]$.

Figures

Dichlorido- $1 \kappa^{2} C l-\mu-\left[(1,2,5,6-\eta: 3,4,7,8-\eta)-1,3,5,7\right.$ - cyclooctatetraene]dimethyl- $2 \kappa^{2} C$-diplatinum(II)

Crystal data

$\left[\mathrm{Pt}_{2}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{8}\right)\right]$	$F_{000}=1056$
$M_{r}=595.29$	$D_{\mathrm{x}}=3.136 \mathrm{Mg} \mathrm{m}^{-3}$
Orthorhombic, Pnma	Mo Ka radiation
Hall symbol: -P 2 ac 2 n	$\lambda=0.71073 \AA$
$a=7.8478(8) \AA$	Cell parameters from 1985 reflections
$b=10.3924(10) \AA$	$\theta=2.4-25.0^{\circ}$
$c=15.4582(16) \AA$	$\mu=22.55 \mathrm{~mm}^{-1}$
$V=1260.7(2) \AA^{3}$	$T=293(2) \mathrm{K}$
$Z=4$	Needle, orange
	$0.25 \times 0.12 \times 0.10 \mathrm{~mm}$

Data collection

Bruker SMART 1000 CCD

diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite

1363 independent reflections
1226 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.050$
$T=293(2) \mathrm{K}$
φ and ω scans
Absorption correction: Multi-scan (SADABS; Bruker, 2000)
$T_{\text {min }}=0.574, T_{\text {max }}=1.000$
7010 measured reflections

$$
\begin{aligned}
& \theta_{\max }=26.4^{\circ} \\
& \theta_{\min }=2.4^{\circ} \\
& h=-7 \rightarrow 9 \\
& k=-12 \rightarrow 12 \\
& l=-19 \rightarrow 17
\end{aligned}
$$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0633 P)^{2}+15.8923 P\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=1.77 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-1.94$ e \AA^{-3}
Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} U_{\text {eq }}$
Pt1	$0.82988(12)$	0.7500	$-0.11111(6)$	$0.0463(3)$
Pt2	$0.43629(11)$	0.7500	$0.06729(6)$	$0.0388(3)$
Cl1	$1.0022(6)$	$0.5927(5)$	$-0.1916(3)$	$0.0579(11)$
C1	$0.624(2)$	$0.6080(14)$	$-0.0752(12)$	$0.045(4)$
H1	0.6470	0.5587	-0.1240	0.054^{*}
C2	$0.738(2)$	$0.6098(16)$	$-0.0088(11)$	$0.051(4)$
H2	0.8374	0.5611	-0.0135	0.061^{*}
C3	$0.7102(19)$	$0.6866(15)$	$0.0704(10)$	$0.044(4)$
H3	0.6917	0.6437	0.1224	0.053^{*}
C4	$0.4650(18)$	$0.6831(16)$	$-0.0708(9)$	$0.041(4)$
H4	0.3615	0.6397	-0.0680	0.049^{*}
C5	$0.157(2)$	0.7500	$0.0657(12)$	$0.026(4)$

H5A	0.1171	0.7500	0.0069	0.039^{*}
H5B	0.1152	0.8254	0.0947	0.039^{*}
C6	$0.410(2)$	0.7500	$0.2049(12)$	$0.036(5)$
H6A	0.5209	0.7500	0.2312	0.054^{*}
H6B	0.3487	0.6746	0.2227	0.054^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pt1	$0.0460(6)$	$0.0553(6)$	$0.0377(6)$	0.000	$0.0031(4)$	0.000
Pt2	$0.0409(5)$	$0.0423(5)$	$0.0331(5)$	0.000	$0.0005(4)$	0.000
Cl1	$0.060(3)$	$0.070(3)$	$0.043(3)$	$0.016(2)$	$0.0070(19)$	$-0.001(2)$
C1	$0.060(10)$	$0.025(7)$	$0.049(11)$	$0.000(7)$	$0.016(8)$	$-0.004(7)$
C2	$0.060(10)$	$0.047(9)$	$0.045(10)$	$0.005(8)$	$0.011(8)$	$0.008(8)$
C3	$0.048(9)$	$0.045(8)$	$0.038(9)$	$0.014(7)$	$0.006(7)$	$0.013(7)$
C4	$0.034(7)$	$0.063(9)$	$0.027(8)$	$-0.007(7)$	$0.003(6)$	$-0.003(7)$
C5	$0.022(9)$	$0.035(10)$	$0.020(10)$	0.000	$-0.006(7)$	0.000
C6	$0.029(10)$	$0.063(13)$	$0.015(10)$	0.000	$-0.009(8)$	0.000

Geometric parameters ($\left.\AA{ }^{\circ}{ }^{\circ}\right)$

$\mathrm{Pt} 1-\mathrm{C} 1$	2.256 (16)
$\mathrm{Pt} 1-\mathrm{C} 1^{\mathrm{i}}$	2.256 (16)
$\mathrm{Pt} 1-\mathrm{C} 2{ }^{\text {i }}$	2.267 (16)
$\mathrm{Pt} 1-\mathrm{C} 2$	2.267 (16)
$\mathrm{Pt} 1-\mathrm{Cl} 1$	2.460 (4)
$\mathrm{Pt} 1-\mathrm{Cl1} 1^{\text {i }}$	2.460 (4)
Pt2-C6	2.137 (19)
Pt2-C5	2.195 (17)
$\mathrm{Pt} 2-\mathrm{C} 3{ }^{\text {i }}$	2.249 (15)
Pt2-C3	2.249 (15)
Pt2-C4	2.257 (15)
Pt2-C4 ${ }^{\text {i }}$	2.257 (15)
C1-C2	1.36 (3)
C1-Pt1-C1 ${ }^{\text {i }}$	81.7 (8)
$\mathrm{C} 1-\mathrm{Pt} 1-\mathrm{C} 2{ }^{\text {i }}$	91.3 (6)
$\mathrm{C} 1{ }^{\mathrm{i}}$ - $\mathrm{Pt} 1-\mathrm{C} 2^{\mathrm{i}}$	35.1 (6)
$\mathrm{C} 1-\mathrm{Pt} 1-\mathrm{C} 2$	35.1 (6)
$\mathrm{C} 1{ }^{\mathrm{i}}-\mathrm{Pt} 1-\mathrm{C} 2$	91.3 (6)
$\mathrm{C} 2{ }^{\mathrm{i}}-\mathrm{Pt} 1-\mathrm{C} 2$	80.0 (9)
C1-Pt1-Cl1	94.8 (4)
C1 ${ }^{\text {i }}$ - $\mathrm{Pt} 1-\mathrm{Cl1}$	162.3 (5)
$\mathrm{C} 2{ }^{\text {i }}$ - $\mathrm{Pt} 1-\mathrm{Cl1}$	162.6 (5)
$\mathrm{C} 2-\mathrm{Pt} 1-\mathrm{Cl} 1$	95.7 (5)
C1-Pt1- $\mathrm{Cl}^{\text {i }}$	162.3 (5)

$\mathrm{C} 1-\mathrm{C} 4$	$1.47(2)$
$\mathrm{C} 1-\mathrm{H} 1$	0.9300
$\mathrm{C} 2-\mathrm{C} 3$	$1.48(2)$
$\mathrm{C} 2-\mathrm{H} 2$	0.9300
$\mathrm{C} 3-\mathrm{C} 3$	
i	$1.32(3)$
$\mathrm{C} 3-\mathrm{H} 3$	0.9300
$\mathrm{C} 4-\mathrm{C} 4$	$1.39(3)$
$\mathrm{C} 4-\mathrm{H} 4$	0.9300
$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.9600
$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	0.9600
$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	0.9600
$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	0.9600
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 4$	$121.1(15)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Pt} 1$	$72.9(10)$
$\mathrm{C} 4-\mathrm{C} 1-\mathrm{Pt} 1$	$105.8(10)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	119.5
$\mathrm{C} 4-\mathrm{C} 1-\mathrm{H} 1$	119.5
$\mathrm{Pt} 1-\mathrm{C} 1-\mathrm{H} 1$	91.3
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$122.2(16)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{Pt} 1$	$72.1(10)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{Pt} 1$	$106.2(10)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	118.9
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	118.9

sup-4

$\mathrm{C} 1{ }^{\mathrm{i}}-\mathrm{Pt} 1-\mathrm{Cl1}{ }^{\text {i }}$	94.8 (4)
$\mathrm{C} 2{ }^{\mathrm{i}}-\mathrm{Pt} 1-\mathrm{Cl1}{ }^{\text {i }}$	95.7 (5)
$\mathrm{C} 2-\mathrm{Pt1}-\mathrm{Cl1}^{\text {i }}$	162.6 (5)
$\mathrm{Cl1}-\mathrm{Pt} 1-\mathrm{Cl1}{ }^{\text {i }}$	83.3 (2)
C6-Pt2-C5	85.1 (7)
C6-Pt2-C3 ${ }^{\text {i }}$	94.0 (6)
C5-Pt2-C3 ${ }^{\text {i }}$	163.0 (4)
C6-Pt2-C3	94.0 (6)
C5-Pt2-C3	163.0 (4)
$\mathrm{C} 3{ }^{\text {i }}$ - $\mathrm{Pt} 2-\mathrm{C} 3$	34.1 (8)
C6-Pt2-C4	162.0 (4)
C5-Pt2-C4	95.1 (6)
C3 ${ }^{\text {i }}$ - $\mathrm{Pt} 2-\mathrm{C} 4$	90.9 (5)
C3-Pt2-C4	80.5 (6)
C6-Pt2-C4 ${ }^{\text {i }}$	162.0 (4)
C5-Pt2-C4 ${ }^{\text {i }}$	95.1 (6)
$\mathrm{C} 3{ }^{\text {i }}$ - $\mathrm{Pt} 2-\mathrm{C} 4^{\mathrm{i}}$	80.5 (6)
C3-Pt2-C4 $4^{\text {i }}$	90.9 (5)
C4-Pt2-C4 ${ }^{\text {i }}$	35.9 (9)
$\mathrm{C} 1{ }^{\text {i }}-\mathrm{Pt} 1-\mathrm{C} 1-\mathrm{C} 2$	-104.3 (10)
$\mathrm{C} 2-\mathrm{Pt} 1-\mathrm{C} 1-\mathrm{C} 2$	-70.5 (12)
$\mathrm{Cl} 1-\mathrm{Pt} 1-\mathrm{C} 1-\mathrm{C} 2$	93.2 (10)
$\mathrm{Cl1}-\mathrm{Pt} 1-\mathrm{C} 1-\mathrm{C} 2$	176.1 (11)
$\mathrm{C} 1{ }^{\mathrm{i}}-\mathrm{Pt} 1-\mathrm{C} 1-\mathrm{C} 4$	14.0 (14)
$\mathrm{C} 2{ }^{\text {i }}-\mathrm{Pt} 1-\mathrm{C} 1-\mathrm{C} 4$	47.8 (12)
$\mathrm{C} 2-\mathrm{Pt1}-\mathrm{C} 1-\mathrm{C} 4$	118.3 (16)
$\mathrm{Cl} 1-\mathrm{Pt1}-\mathrm{C} 1-\mathrm{C} 4$	-148.5 (10)
$\mathrm{Cl1}-\mathrm{Pt} 1-\mathrm{C} 1-\mathrm{C} 4$	-65.6(18)
C4-C1-C2-C3	0 (2)
$\mathrm{Pt} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	98.2 (15)
$\mathrm{C} 4-\mathrm{C} 1-\mathrm{C} 2-\mathrm{Pt} 1$	-98.4 (14)
$\mathrm{C} 1{ }^{\mathrm{i}}-\mathrm{Pt} 1-\mathrm{C} 2-\mathrm{C} 1$	73.5 (11)
$\mathrm{C} 2-\mathrm{Pt} 1-\mathrm{C} 2-\mathrm{C} 1$	106.9 (9)
$\mathrm{Cl1}-\mathrm{Pt1}-\mathrm{C} 2-\mathrm{C} 1$	-90.2 (9)
$\mathrm{Cl1}-\mathrm{Pt} 1-\mathrm{C} 2-\mathrm{C} 1$	-176.0 (11)
$\mathrm{C} 1-\mathrm{Pt} 1-\mathrm{C} 2-\mathrm{C} 3$	-119.3 (16)
$\mathrm{C} 1{ }^{\text {i }}-\mathrm{Pt} 1-\mathrm{C} 2-\mathrm{C} 3$	-45.8 (12)
$\mathrm{C} 2-\mathrm{Pt} 1-\mathrm{C} 2-\mathrm{C} 3$	-12.4 (15)
$\mathrm{C} 11-\mathrm{Pt1}-\mathrm{C} 2-\mathrm{C} 3$	150.5 (11)
$\mathrm{C} 11^{\mathrm{i}}-\mathrm{Pt} 1-\mathrm{C} 2-\mathrm{C} 3$	65 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 3^{\text {i }}$	-67.4 (18)

$\mathrm{Pt} 1-\mathrm{C} 2-\mathrm{H} 2$	91.7
C3 ${ }^{\text {i }}$ - $\mathrm{C} 3-\mathrm{C} 2$	122.6 (9)
$\mathrm{C} 3{ }^{\text {i }}$ - $\mathrm{C} 3-\mathrm{Pt} 2$	73.0 (4)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{Pt} 2$	106.4 (11)
C3 ${ }^{\text {i }}$ - $\mathrm{C} 3-\mathrm{H} 3$	118.7
C2-C3-H3	118.7
Pt2-C3-H3	90.6
$\mathrm{C} 4{ }^{\mathrm{i}}-\mathrm{C} 4-\mathrm{C} 1$	121.9 (9)
$\mathrm{C} 4{ }^{\mathrm{i}}$ - $\mathrm{C} 4-\mathrm{Pt} 2$	72.1 (4)
C1-C4-Pt2	106.9 (10)
$\mathrm{C} 4{ }^{\text {i }}$ - $4-\mathrm{H} 4$	119.0
$\mathrm{C} 1-\mathrm{C} 4-\mathrm{H} 4$	119.0
Pt2-C4-H4	91.0
$\mathrm{Pt2}-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	109.5
Pt2-C5-H5B	109.5
H5A-C5-H5B	109.5
Pt2-C6-H6A	109.5
$\mathrm{Pt} 2-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	109.5
H6A-C6-H6B	109.5
$\mathrm{C} 4-\mathrm{Pt} 2-\mathrm{C} 3-\mathrm{C} 3^{\text {i }}$	106.0 (4)
$\mathrm{C} 4{ }^{\mathrm{i}}-\mathrm{Pt} 2-\mathrm{C} 3-\mathrm{C} 3^{\text {i }}$	71.5 (4)
C6-Pt2-C3-C2	148.9 (10)
C5-Pt2-C3-C2	62 (3)
$\mathrm{C} 3-\mathrm{Pt} 2-\mathrm{C} 3-\mathrm{C} 2$	-119.9 (9)
C4-Pt2-C3-C2	-13.9 (10)
$\mathrm{C} 4{ }^{\mathrm{i}}-\mathrm{Pt} 2-\mathrm{C} 3-\mathrm{C} 2$	-48.4 (11)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 4-\mathrm{C} 4{ }^{\text {i }}$	66.8 (17)
$\mathrm{Pt} 1-\mathrm{C} 1-\mathrm{C} 4-\mathrm{C} 4{ }^{\text {i }}$	-12.4 (12)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 4-\mathrm{Pt} 2$	-12.3 (18)
$\mathrm{Pt} 1-\mathrm{C} 1-\mathrm{C} 4-\mathrm{Pt} 2$	-91.5 (9)
C6-Pt2-C4-C4 ${ }^{\text {i }}$	-178 (2)
C5-Pt2-C4-C4 ${ }^{\text {i }}$	91.7 (2)
C3 ${ }^{\text {i }}$ - $\mathrm{Pt} 2-\mathrm{C} 4-\mathrm{C} 4^{\text {i }}$	-72.4 (4)
C3-Pt2-C4-C4 ${ }^{\text {i }}$	-105.0 (4)
C6-Pt2-C4-C1	-60 (2)
C5-Pt2-C4-C1	-149.5 (10)
C3 ${ }^{\text {i }} \mathrm{Pt} 2-\mathrm{C} 4-\mathrm{C} 1$	46.5 (11)
C3-Pt2-C4-C1	13.9 (10)
$\mathrm{C} 4{ }^{\mathrm{i}}-\mathrm{Pt} 2-\mathrm{C} 4-\mathrm{C} 1$	118.9 (10)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 1^{\mathrm{i}}-\mathrm{C} 2^{\mathrm{i}}$	180.000 (3)
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 3^{\mathrm{i}}-\mathrm{C} 4$	0.000 (5)

supplementary materials

$\mathrm{Pt} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 3^{\mathrm{i}}$	$11.3(13)$	$\mathrm{C} 4-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$0(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{Pt} 2$	$12.6(19)$	$\mathrm{C} 4^{\mathrm{i}}-\mathrm{C} 1^{\mathrm{i}}-\mathrm{C} 2^{\mathrm{i}}-\mathrm{C} 3^{\mathrm{i}}$	$0(2)$
$\mathrm{Pt} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{Pt} 2$	$91.3(10)$	$\mathrm{C} 1-\mathrm{C} 4-\mathrm{C} 3^{\mathrm{i}}-\mathrm{C} 2^{\mathrm{i}}$	$93.6(12)$
$\mathrm{C} 6-\mathrm{Pt} 2-\mathrm{C} 3-\mathrm{C} 3^{\mathrm{i}}$	$-91.2(2)$	$\mathrm{C} 1^{\mathrm{i}}-\mathrm{C} 4^{\mathrm{i}}-\mathrm{C} 3-\mathrm{C} 2$	$-93.6(12)$
$\mathrm{C} 5-\mathrm{Pt} 2-\mathrm{C} 3-\mathrm{C} 3^{\mathrm{i}}$	$-178(2)$		

Symmetry codes: (i) $x,-y+3 / 2, z$.

Fig. 1

supplementary materials

Fig. 2

