metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Dichlorido- $1\kappa^2$ Cl- μ -[(1,2,5,6- η :3,4,7,8- η)-1,3,5,7-cyclooctatetraene]dimethyl- $2\kappa^2 C$ -diplatinum(II)

Ah-Ran Song,^a In-Chul Hwang^b and Kwang Ha^a*

^aSchool of Applied Chemical Engineering, Centre for Functional Nano Fine Chemicals, Chonnam National University, Gwangju 500-757, Republic of Korea, and ^bDepartment of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea

Correspondence e-mail: hakwang@chonnam.ac.kr

Received 29 May 2007; accepted 7 June 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.020 Å; R factor = 0.058; wR factor = 0.145; data-to-parameter ratio = 19.5.

The title complex, $[Pt_2(CH_3)_2Cl_2(C_8H_8)]$, consists of PtCl₂ and $Pt(CH_3)_2$ groups bridged by a 1,3,5,7-cyclooctatetraene ligand, and is disposed about a mirror plane passing through the two Pt atoms, the methyl groups and the centre of the ligand. The coordination geometry around each Pt^{II} centre is essentially square planar.

Related literature

For related literature, see: Doyle & Baenziger (1995); Doyle et al. (1961); Elschenbroich & Salzer (1992); Fritz & Keller (1962); Fritz & Sellmann (1967); Jensen (1953); Kistner et al. (1963); Kunkely & Vogler (2006); Song et al. (2006); Tresoldi et al. (1982).

Experimental

Crystal data

[Pt₂(CH₃)₂Cl₂(C₈H₈)] $M_r = 595.29$ Orthorhombic, Pnma a = 7.8478 (8) Å b = 10.3924 (10) Å c = 15.4582 (16) Å

V = 1260.7 (2) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 22.55 \text{ mm}^-$ T = 293 (2) K $0.25 \times 0.12 \times 0.10 \ \mathrm{mm}$

Data collection

```
Bruker SMART 1000 CCD
  diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2000)
  T_{\min} = 0.574, T_{\max} = 1.000
  (expected range = 0.060-0.105)
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.058$	70 parameters
$wR(F^2) = 0.145$	H-atom parameters constrained
S = 1.20	$\Delta \rho_{\rm max} = 1.77 \ {\rm e} \ {\rm \AA}^{-3}$
1363 reflections	$\Delta \rho_{\rm min} = -1.95 \text{ e } \text{\AA}^{-3}$

7010 measured reflections

 $R_{\rm int} = 0.050$

1363 independent reflections

1226 reflections with $I > 2\sigma(I)$

Table 1

Selected geometric parameters (Å, °).

Pt1-C1	2.256 (16)	Pt2-C5	2.195 (17)
Pt1-C2	2.267 (16)	Pt2-C3	2.249 (15)
Pt1-Cl1	2.460 (4)	Pt2-C4	2.257 (15)
Pt2-C6	2.137 (19)		
Cl1-Pt1-Cl1 ⁱ	83.3 (2)	C6-Pt2-C5	85.1 (7)

Symmetry code: (i) $x, -y + \frac{3}{2}, z$.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

This study received financial support from Chonnam National University in 2006.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SK3133).

References

- Bruker (2000). SADABS (Version 2.03). SMART (Version 5.618) and SAINT (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.
- Doyle, J. R. & Baenziger, N. C. (1995). Acta Cryst. C51, 1116-1118.
- Doyle, J. R., Hutchinson, J. H., Baenziger, N. C. & Tresselt, L. W. (1961). J. Am. Chem. Soc. 83, 2768-2769.
- Elschenbroich, Ch. & Salzer, A. (1992). Organometallics, 2nd ed, pp. 362-369. Weinheim: VCH.
- Fritz, H. P. & Keller, H. (1962). Chem. Ber. 95, 158-173.
- Fritz, H. P. & Sellmann, D. (1967). Spectrochim. Acta A, 23, 1991-1998.
- Jensen, K. A. (1953). Acta Chem. Scand. 7, 868-870.
- Kistner, C. R., Hutchinson, J. H., Doyle, J. R. & Storlie, J. C. (1963). Inorg. Chem. 2. 1255-1261.
- Kunkely, H. & Vogler, A. (2006). Inorg. Chem. Commun. 9, 827-829.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Song, A.-R., Hwang, I.-C. & Ha, K. (2006). Z. Kristallogr. New Cryst. Struct. 221, 471-472.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Tresoldi, G., Faraone, F., Piraino, P. & Bottino, F. A. (1982). J. Organomet. Chem. 231, 265-270.

supplementary materials

Acta Cryst. (2007). E63, m1878 [doi:10.1107/S1600536807028036]

Dichlorido- $1\kappa^2$ Cl- μ -[(1,2,5,6- η :3,4,7,8- η)-1,3,5,7-cyclooctatetraene]dimethyl- $2\kappa^2$ C-diplatinum(II) A.-R. Song, I.-C. Hwang and K. Ha

Comment

1,3,5,7-Cyclooctatetraene (cot) is a widely utilized and versatile ligand in organometallic chemistry (Elschenbroich & Salzer, 1992). The cot ligand can coordinate metal atoms as a tub-shaped tetraene or as a planar aromatic anion $C_8H_8^{2-}$, and its coordination modes are quite variable, *viz*. η^2 , η^3 , η^4 , η^5 , η^6 and η^8 . Numerous cot-metal complexes are known, however, relatively few mono- and dinuclear Pt compounds with cot are synthesized and studied (Jensen, 1953; Doyle *et al.*, 1961; Fritz & Keller, 1962; Kistner *et al.*, 1963; Fritz & Sellmann, 1967; Tresoldi *et al.*, 1982; Kunkely & Vogler, 2006). The decomposition of the mononuclear complexes, [(cot)PtR₂] ($R = CH_3$ or C_6H_5), lead to the formation of the dinuclear complexes, [$R_2Pt(cot)PtR_2$], in which cot acts as a bridging ligand between two Pt atoms. The NMR spectra of the dinuclear compounds were examined for potential long-range coupling by the ¹⁹⁵Pt nuclei (Kistner *et al.*, 1963), and only the crystal structure of the dinuclear complex with CH₃ was reported (Doyle & Baenziger, 1995; Song *et al.*, 2006). The X-ray structure analysis reveals that the complex contains a twofold axis passing through the Pt atoms and the center of the cot ligand. The dinuclear title complex, (I), was formed by the reaction of [(cot)Pt(CH₃)₂] with K₂PtCl₄ and its structure is reported here.

The complex consists of PtCl₂ and Pt(CH₃)₂ groups bridged by an 1,3,5,7-cyclooctatetraene ligand (Fig. 1), and is disposed about a mirror plane passing through the two Pt atoms and the center of the ligand (Fig. 2). Each Pt atom is essentially in a square-planar environment defined by the two midpoints of the π -coordinated double bonds of the cot ligand and the two Cl atoms or the two C atoms of methyl groups. The midpoints, the Pt and Cl or C atoms form two coordination planes with the largest deviations 0.002 Å (Pt1) from the least-squares planes. The bond angles lie in the 85.1 (7)°, <M2—Pt2—M2ⁱ = 85.3°, <C6—Pt2—M1 = 94.2°, <C5—Pt2—M2 = 95.4°; symmetry code i: x, 1.5 - y, z; M1 and M2 denote the centroids of the olefinic bonds C1—C2 and C3— $C3^{i}$, respectively). The coordination planes are perfectly perpendicular to each other (90.0°). The Pt—C(cot) bond lengths range from 2.249 (15) Å to 2.267 (16) Å, and are slightly longer than the Pt-C(methyl) bond (2.195 (17) Å and 2.137 (19) Å). The distances between the Pt atom and the midpoints are 2.156 Å (M1), 2.150 Å (M2) and 2.147 Å (M2ⁱ). The Pt1-C1/C2 bonds *trans* to Cl atom are, on an average, almost equal to the Pt2—C3/C4 bonds *trans* to methyl group (the mean lengths: Pt1—C1/C2 = 2.262 Å and Pt2—C3/C4 = 2.253Å). The cot ligand coordinates the two Pt atoms very symmetrically in the tub conformation. The distance between the Pt atoms is 4.1407 (4) Å. The four C atoms (C1, C2, C1ⁱ and C2ⁱ) coordinated to Pt1 and the four C atoms (C3, C4, C3ⁱ and C4ⁱ) coordinated to Pt2 lie on a plane, respectively, with the torsion angles $<C1-C2-C2^{i}-C1^{i}=0^{\circ}$ and $<C3-C3^{i}-C4$ = 0°. The Pt atoms are displaced by 1.581 (12) Å (Pt1) from the plane $C1/C2/C2^{i}/C1^{i}$ and 1.580 (10) Å (Pt2) from the plane $C3/C3^{i}/C4^{i}/C4$, respectively. The planes are nearly parallel to each other with dihedral angle $0.3(1.9)^{\circ}$. The cot ring angles lie in the range of 121.1 $(15)^{\circ}$ -122.6 $(9)^{\circ}$ in the complex.

Experimental

To a solution of cyclooctatetraenedimethylplatinum(II) (0.0724 g, 0.22 mmol) in CH_2Cl_2 (15 ml) and EtOH (15 ml) was added a solution of K_2PtCl_4 (0.1018 g, 0.25 mmol) in H_2O (10 ml), and stirred for 24 h at room temperature. The formed precipitate was collected by filtration, washed with CH_2Cl_2 and H_2O , and dried, giving a orange powder (0.0277 g). Needle-shaped crystals suitable for an X-ray structure analysis were obtained *via* slow evaporation from a CHCl₃ solution.

Refinement

All H atoms were positioned geometrically and allowed to ride on their respective carrier atoms [C—H = 0.93 or 0.96 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$].

Figures

Fig. 1. The structure of (I), showing the atom-numbering scheme (symmetry code a: x, 1.5 - y, z). Displacement ellipsoids are drawn at the 30% probability level and H atoms are represented by circles of arbitrary size.

Fig. 2. A packing diagram for (I).

Dichlorido- $1\kappa^2 C/\mu$ -[(1,2,5,6- η :3,4,7,8- η)-1,3,5,7- cyclooctatetraene]dimethyl- $2\kappa^2 C$ -diplatinum(II)

 $R_{\rm int} = 0.050$

Crystal data	
[Pt ₂ (CH ₃) ₂ Cl ₂ (C ₈ H ₈)]	$F_{000} = 1056$
$M_r = 595.29$	$D_{\rm x} = 3.136 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, Pnma	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2n	Cell parameters from 1985 reflections
<i>a</i> = 7.8478 (8) Å	$\theta = 2.4 - 25.0^{\circ}$
b = 10.3924 (10) Å	$\mu = 22.55 \text{ mm}^{-1}$
c = 15.4582 (16) Å	T = 293 (2) K
$V = 1260.7 (2) \text{ Å}^3$	Needle, orange
Z = 4	$0.25 \times 0.12 \times 0.10 \text{ mm}$
Data collection	
Bruker SMART 1000 CCD diffractometer	1363 independent reflections
Radiation source: fine-focus sealed tube	1226 reflections with $I > 2\sigma(I)$

Monochromator: graphite

T = 293(2) K	$\theta_{max} = 26.4^{\circ}$
φ and ω scans	$\theta_{\min} = 2.4^{\circ}$
Absorption correction: Multi-scan (SADABS; Bruker, 2000)	$h = -7 \rightarrow 9$
$T_{\min} = 0.574, \ T_{\max} = 1.000$	$k = -12 \rightarrow 12$
7010 measured reflections	$l = -19 \rightarrow 17$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.058$	H-atom parameters constrained
$wR(F^2) = 0.145$	$w = 1/[\sigma^2(F_o^2) + (0.0633P)^2 + 15.8923P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.20	$(\Delta/\sigma)_{\rm max} < 0.001$
1363 reflections	$\Delta \rho_{max} = 1.77 \text{ e } \text{\AA}^{-3}$
70 parameters	$\Delta \rho_{min} = -1.94 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Pt1	0.82988 (12)	0.7500	-0.11111 (6)	0.0463 (3)
Pt2	0.43629 (11)	0.7500	0.06729 (6)	0.0388 (3)
Cl1	1.0022 (6)	0.5927 (5)	-0.1916 (3)	0.0579 (11)
C1	0.624 (2)	0.6080 (14)	-0.0752 (12)	0.045 (4)
H1	0.6470	0.5587	-0.1240	0.054*
C2	0.738 (2)	0.6098 (16)	-0.0088 (11)	0.051 (4)
H2	0.8374	0.5611	-0.0135	0.061*
C3	0.7102 (19)	0.6866 (15)	0.0704 (10)	0.044 (4)
Н3	0.6917	0.6437	0.1224	0.053*
C4	0.4650 (18)	0.6831 (16)	-0.0708 (9)	0.041 (4)
H4	0.3615	0.6397	-0.0680	0.049*
C5	0.157 (2)	0.7500	0.0657 (12)	0.026 (4)

supplementary materials

H5A	0.1171	0.7500	0.006	59	0.039*	
H5B	0.1152	0.8254	0.094	47	0.039*	
C6	0.410 (2)	0.7500	0.204	49 (12)	0.036 (5)	
H6A	0.5209	0.7500	0.231	12	0.054*	
H6B	0.3487	0.6746	0.222	27	0.054*	
Atomic displace	ement parameter	$rs(\AA^2)$				
	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U ²³
Pt1	0.0460 (6)	0.0553 (6)	0.0377 (6)	0.000	0.0031 (4)	0.000
Pt2	0.0409 (5)	0.0423 (5)	0.0331 (5)	0.000	0.0005 (4)	0.000
Cl1	0.060 (3)	0.070 (3)	0.043 (3)	0.016 (2)	0.0070 (19)	-0.001 (2)
C1	0.060 (10)	0.025 (7)	0.049 (11)	0.000(7)	0.016 (8)	-0.004 (7)
C2	0.060 (10)	0.047 (9)	0.045 (10)	0.005 (8)	0.011 (8)	0.008 (8)
C3	0.048 (9)	0.045 (8)	0.038 (9)	0.014 (7)	0.006 (7)	0.013 (7)
C4	0.034 (7)	0.063 (9)	0.027 (8)	-0.007 (7)	0.003 (6)	-0.003 (7)
C5	0.022 (9)	0.035 (10)	0.020 (10)	0.000	-0.006 (7)	0.000
C6	0.029 (10)	0.063 (13)	0.015 (10)	0.000	-0.009 (8)	0.000
Geometric para	ameters (Å, °)					
Pt1—C1		2.256 (16)	C1—	-C4	1.4	7 (2)
Pt1—C1 ⁱ		2.256 (16)	C1—	-H1	0.9	300
Pt1—C2 ⁱ		2.267 (16)	C2—	-C3	1.4	8 (2)
Pt1—C2		2.267 (16)	C2—	-H2	0.9	300
Pt1—Cl1		2.460 (4)	С3—	-C3 ⁱ	1.3	2 (3)
Pt1—Cl1 ⁱ		2.460 (4)	С3—	-Н3	0.9	300
Pt2—C6		2.137 (19)	C4—	-C4 ⁱ	1.3	9 (3)
Pt2—C5		2.195 (17)	C4—	-H4	0.9	300
Pt2—C3 ⁱ		2.249 (15)	С5—	-H5A	0.9	600
Pt2—C3		2.249 (15)	С5—	-H5B	0.9	600
Pt2—C4		2.257 (15)	C6—	-H6A	0.9	600
Pt2—C4 ⁱ		2.257 (15)	C6—	-H6B	0.9	600
C1—C2		1.36 (3)				
C1—Pt1—C1 ⁱ		81.7 (8)	C2—	-C1—C4	12	1.1 (15)
C1—Pt1—C2 ⁱ		91.3 (6)	C2—	-C1—Pt1	72	9 (10)
C1 ⁱ —Pt1—C2 ⁱ		35.1 (6)	C4—	-C1—Pt1	10.	5.8 (10)
C1—Pt1—C2		35.1 (6)	C2—	-C1—H1	119	9.5
C1 ⁱ —Pt1—C2		91.3 (6)	C4—	-C1—H1	119	9.5
C2 ⁱ —Pt1—C2		80.0 (9)	Pt1—	-C1H1	91	.3
C1—Pt1—Cl1		94.8 (4)	C1—	-С2—С3	12	2.2 (16)
C1 ⁱ —Pt1—Cl1		162.3 (5)	C1—	-C2—Pt1	72.	.1 (10)
C2 ⁱ —Pt1—Cl1		162.6 (5)	С3—	-C2—Pt1	10	6.2 (10)
C2—Pt1—Cl1		95.7 (5)	C1—	-C2—H2	113	8.9
C1—Pt1—Cl1 ⁱ		162.3 (5)	С3—	-C2—H2	11	8.9

C1 ⁱ —Pt1—Cl1 ⁱ	94.8 (4)	Pt1—C2—H2	91.7
C2 ⁱ —Pt1—Cl1 ⁱ	95.7 (5)	C3 ⁱ —C3—C2	122.6 (9)
C2—Pt1—Cl1 ⁱ	162.6 (5)	C3 ⁱ —C3—Pt2	73.0 (4)
Cl1—Pt1—Cl1 ⁱ	83.3 (2)	C2—C3—Pt2	106.4 (11)
C6—Pt2—C5	85.1 (7)	С3 ^і —С3—Н3	118.7
C6—Pt2—C3 ⁱ	94.0 (6)	С2—С3—Н3	118.7
C5—Pt2—C3 ⁱ	163.0 (4)	Pt2—C3—H3	90.6
C6—Pt2—C3	94.0 (6)	C4 ⁱ —C4—C1	121.9 (9)
C5—Pt2—C3	163.0 (4)	C4 ⁱ —C4—Pt2	72.1 (4)
C3 ⁱ —Pt2—C3	34.1 (8)	C1—C4—Pt2	106.9 (10)
C6—Pt2—C4	162.0 (4)	C4 ⁱ —C4—H4	119.0
C5—Pt2—C4	95.1 (6)	C1—C4—H4	119.0
C3 ⁱ —Pt2—C4	90.9 (5)	Pt2—C4—H4	91.0
C3—Pt2—C4	80.5 (6)	Pt2—C5—H5A	109.5
C6—Pt2—C4 ⁱ	162.0 (4)	Pt2—C5—H5B	109.5
C5—Pt2—C4 ⁱ	95.1 (6)	H5A—C5—H5B	109.5
C3 ⁱ —Pt2—C4 ⁱ	80.5 (6)	Pt2—C6—H6A	109.5
C3—Pt2—C4 ⁱ	90.9 (5)	Pt2—C6—H6B	109.5
C4—Pt2—C4 ⁱ	35.9 (9)	H6A—C6—H6B	109.5
C1 ⁱ —Pt1—C1—C2	-104.3 (10)	C4—Pt2—C3—C3 ⁱ	106.0 (4)
C2 ⁱ —Pt1—C1—C2	-70.5 (12)	C4 ⁱ —Pt2—C3—C3 ⁱ	71.5 (4)
Cl1—Pt1—C1—C2	93.2 (10)	C6—Pt2—C3—C2	148.9 (10)
Cl1 ⁱ —Pt1—C1—C2	176.1 (11)	C5—Pt2—C3—C2	62 (3)
C1 ⁱ —Pt1—C1—C4	14.0 (14)	C3 ⁱ —Pt2—C3—C2	-119.9 (9)
C2 ⁱ —Pt1—C1—C4	47.8 (12)	C4—Pt2—C3—C2	-13.9 (10)
C2—Pt1—C1—C4	118.3 (16)	C4 ⁱ —Pt2—C3—C2	-48.4 (11)
Cl1—Pt1—C1—C4	-148.5 (10)	C2-C1-C4-C4 ⁱ	66.8 (17)
Cl1 ⁱ —Pt1—C1—C4	-65.6 (18)	Pt1—C1—C4—C4 ⁱ	-12.4 (12)
C4—C1—C2—C3	0(2)	C2—C1—C4—Pt2	-12.3 (18)
Pt1-C1-C2-C3	98.2 (15)	Pt1-C1-C4-Pt2	-91.5 (9)
C4—C1—C2—Pt1	-98.4 (14)	C6—Pt2—C4—C4 ⁱ	-178 (2)
C1 ⁱ —Pt1—C2—C1	73.5 (11)	C5—Pt2—C4—C4 ⁱ	91.7 (2)
C2 ⁱ —Pt1—C2—C1	106.9 (9)	C3 ⁱ —Pt2—C4—C4 ⁱ	-72.4 (4)
Cl1—Pt1—C2—C1	-90.2 (9)	C3—Pt2—C4—C4 ⁱ	-105.0 (4)
Cl1 ⁱ —Pt1—C2—C1	-176.0 (11)	C6—Pt2—C4—C1	-60 (2)
C1—Pt1—C2—C3	-119.3 (16)	C5—Pt2—C4—C1	-149.5 (10)
C1 ⁱ —Pt1—C2—C3	-45.8 (12)	C3 ⁱ —Pt2—C4—C1	46.5 (11)
C2 ⁱ —Pt1—C2—C3	-12.4 (15)	C3—Pt2—C4—C1	13.9 (10)
Cl1—Pt1—C2—C3	150.5 (11)	C4 ⁱ —Pt2—C4—C1	118.9 (10)
Cl1 ⁱ —Pt1—C2—C3	65 (2)	$C1-C2-C1^{i}-C2^{i}$	180.000 (3)
C1—C2—C3—C3 ⁱ	-67.4 (18)	$C3-C4^{i}-C3^{i}-C4$	0.000 (5)

supplementary materials

Pt1—C2—C3—C3 ⁱ	11.3 (13)	C4—C1—C2—C3	0(2)
C1—C2—C3—Pt2	12.6 (19)	$C4^{i}$ — $C1^{i}$ — $C2^{i}$ — $C3^{i}$	0(2)
Pt1—C2—C3—Pt2	91.3 (10)	$C1-C4-C3^{i}-C2^{i}$	93.6 (12)
C6—Pt2—C3—C3 ⁱ	-91.2 (2)	C1 ⁱ —C4 ⁱ —C3—C2	-93.6 (12)
C5—Pt2—C3—C3 ⁱ	-178 (2)		
Symmetry codes: (i) x , $-y+3/2$, z .			

